Technical Note

Anthocyanins from Tibouchina grandiflora

ABSTRACT

From the flowers of Tibouchina grandiflora, four pigments were extracted and two of them were identified as peonidin-3-sophoroside and malvidin-3,5-diglucoside. Another two pigments were tentatively identified as malvidin-3-(p-coumaroyl)-sambubioside-5-glucoside and peonidin-3sambubioside. Three pigments were also present in T. grandiflora but in amounts insufficient to permit identification.

INTRODUCTION

Tibouchina is a large family of ornamental plants that grows easily in tropical and sub-tropical climates. Harborne (1964) identified malvidin-3,5-diglucoside as the major pigment in the flower of *Tibouchina semidecandra*, and Francis *et al.* (1982) found, in the flower of *Tibouchina granulosa*, the following anthocyanins: malvidin-3-(di-*p*-coumaroyl xyloside)-5-glucoside and malvidin-3-(*p*-coumaroyl xyloside)-5-glucoside.

Continuing our studies on natural pigments and possible sources for natural food colours, we identified the anthocyanins extracted from the flowers of *Tibouchina grandiflora*, a branching shrub of approximately 5 ft with very showy and quite abundant dark blue flowers, easily grown as a green fence for gardens or lining roadsides.

153

Food Chemistry 0308-8146/85/\$03.30 © Elsevier Applied Science Publishers Ltd, England, 1985. Printed in Great Britain

MATERIALS AND METHODS

Extraction and purification of pigments

Flowers of *T. grandiflora* were extracted with 0.1% HCl in methanol at 5 °C under N₂ (Francis & Harborne, 1966). The methanolic solution was concentrated under reduced pressure at 30 °C and the extract purified by paper chromatography on Whatman 3MM with two different solvent systems: BAW (*n*-butanol-glacial acetic acid-water, 6:1:2) and 1% HCl (concentrated HCl-water, 3:97). The pigments were separated by TLC on cellulose plates developed with BAW.

Spectral analysis

The spectral data were obtained with a Unicam SP ultraviolet recording spectrophotometer.

Identification of individual pigments

The individual anthocyanins were identified through acid, alkaline, and controlled hydrolysis (Du & Francis, 1973; Chen & Luh, 1967; Francis & Harborne, 1966; Francis *et al.*, 1982). Sugars in 3C position were obtained through peroxide hydrolysis (Chandler & Harper, 1961) and identified by paper chromatography and GLC (Sweeley *et al.*, 1963), under conditions already described (Bobbio *et al.*, 1983). The amounts of total pigments were determined according to Francis (1982).

RESULTS AND DISCUSSION

The total amount of red pigments in the flowers of *T. grandiflora* was determined to be 0.62% (w/w).

TLC of the pigments on cellulose plates with BAW yielded four bands designated A, B, C and D. Three other pigments were present in trace amounts.

Spectral analysis

The spectral data (Table 1) showed that all four pigments had no vicinalfree hydroxyl groups; pigments A and D had sugars attached only in the

	Pigments				
	A	В	C	D	
$\mathbf{R}_{f} \times 100 \begin{cases} \mathbf{BAW}^{b} \\ 1\% & HCl \\ \mathbf{AWH}^{a} \end{cases}$	30	30	40	34	
$R_{f} \times 100 \ \{1\% HCl$	38	15	30	38	
AWH ^a	60	47	52	50	
Ultraviolet fluorescence	negative	dark red	negative	dark red	
$\hat{\lambda}_{vis max}$ (nm)	520	530	528	524	
$\lambda_{\rm UV max}$ (nm)	277	280	275, 325°	256	
$\Delta \hat{\lambda}_{vis max with AlCl_{3}}(nm)$	0	0	0	0	
$E440/E_{\lambda_{vis} max \times 100}$	45	17	14	28	

TABLE 1 Characteristic Data of Tibouchina grandiflora Anthocyanins

" AWH = acetic acid-water-12N HCl (15:82:3).

^b BAW = n-Butanol-acetic acid-water (6:1:2).

^c Indicates the presence of organic acid (Harborne, 1967; Chen & Luh, 1967).

		Intermediates						
			<i>B</i> ₁	<i>C</i> ₁	<i>C</i> ₂	D ₁		
B ~ 100	(BAW ^d	43(41) ^a	41(38) ^b (43) ^c	32(31) ^a	40(38) ^b (43) ^c	43(41) ^a		
	1 % HCl AWH ^e	09(09) ^a	$06(06)^{b}(04)^{c}$	15(13) ^a	05(06) ^b (04) ^c	07(09)ª		
$R_f \times 100$	AWH	36(33)"	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33(33) ^a				
	Forestal ^f			_				
Ultraviole	fluorescence	negative	negative	dark red	negative	negative		
$\hat{\lambda}_{vis max}$ (nn	n)					_		
$\hat{\lambda}_{UV \max}$ (nr								
$\Delta \lambda_{\rm vis with AK}$								

TABLE 2 Characteristic Data for Hydrolysis Intermediates of Tibouching grandiflora

^{*a*} Numbers in parentheses are R_f values obtained by Harborne (1967).

b.c Values obtained by Harborne (1967) for malvidin-3-glucoside and malvidin-5glucoside, respectively.
4 BAW = n-Butanol-acetic acid-water (6:1:2).

^e AWH = acetic acid-water-12N HCl (15:82:3).

^f Forestal = acetic acid-conc. HCl-water (30:3:10).

Samples	$R_f imes 100$					Retention time
	BAW	Forestal	EtAc-Py-W	Bu-Py-W	PrN ^b	(s)
Aglycones						
A	75(71) ^a	64(63) ^a				
В	55(58) ^a	65(60) ^a				
С	58(58) ^a	65(60) ^a				
D	72(71) ^a	63(62) ^a				
Acid						
С	97				85	
Sugars (total hydrolysis)						
Ă			21	18		
В			20	16		
С			22-41	16-33		
D			20-40	17-34		
Sugars $(H_2O_2 hydrolysis)$						
Ă						10.5
В			20	17		
С						
D						
Standards						
p-Coumaric acid	97				85	
Glucose			20	17		
Xylose			41	35		
Sophorose						10.5

 TABLE 3

 Chromatographic Characteristics of Hydrolysis Products

^a Numbers in parentheses are R_f values obtained by Harborne (1967).

^b n-Propanol-NH₄OH, 7:3.

3C position while pigments C and D had both positions 3C and 5C substituted; only pigment C showed absorbance in the region characteristic of acylated anthocyanins (Harborne, 1967; Chen & Luh, 1967; Vaccari *et al.*, 1981).

Total hydrolysis

Hydrolysis data are shown in Tables 2 and 3. Total hydrolysis (Table 3) yielded peonidin as the aglycone for pigments A and D, and malvidin for

pigments B and C; glucose was the only sugar identified in pigments A and B; pigments C and D produced glucose and xylose.

Controlled hydrolysis

Controlled hydrolysis (Table 2) yielded only one intermediate for pigments A, B and D designated A_1 , B_1 and D_1 , and two intermediates for pigment C, indicated by C_1 and C_2 . Pigments A_1 and D_1 were identified by paper chromatography as peonidin-3-glucoside and C_1 had the same mobility as malvidin-3,5-diglucoside. Both intermediates B_1 and C_2 could be either malvidin-3-glucoside or malvidin-5-glucoside. An unquestionable identification could not be made for these compounds due to the similarity of the mobility of malvidin-3-glucoside and malvidin-3-glucoside.

Peroxide hydrolysis

Peroxide hydrolysis (Table 3) demonstrated the presence of sophorose in pigment A (identified by GLC), glucose for pigment B (identified by paper chromatography) and a glucose and xylose containing disaccharide for pigments C and D.

Alkaline hydrolysis

Pigment C was the only pigment with spectral characteristics of an acylated anthocyanin. Alkaline hydrolysis of this pigment produced *p*-coumaric acid, identified by paper chromatography (Table 3). The same yellow colour was obtained when a solution of the acid and of a pure sample of *p*-coumaric acid were treated with an aqueous 2% FeCl₃ solution (Pifferi, 1965).

On the basis of the results, pigments A and B could be identified as peonidin-3-sophoroside and malvidin-3,5-diglucoside, respectively. Unfortunately the lack of reference made impossible an identification of the sugar in the 3C position of pigments C and D. However, since controlled hydrolysis of pigment C produced malvidin-3,5-diglucoside while from pigment D peonidin-3-glucoside was obtained, pigments C and D could be tentatively identified as malvidin-3-(*p*-coumaroyl)sambubioside-5-glucoside and peonidin-3-sambubioside.

CONCLUSION

The major pigment extracted from the flowers of *Tibouchina grandiflora* was identified as peonidin-3-sophoroside. A second pigment was identified as malvidin-3,5-diglucoside. Two other pigments were tenta-tively identified as malvidin-3-(*p*-coumaroyl)-sambubioside-5-glucoside and peonidin-3-sambubioside, the latter occurring in very small amounts. There were trace amounts of three other pigments.

ACKNOWLEDGEMENTS

The authors thank Professor P. G. Pifferi of the University of Bologna, Italy, for an authentic sample of sophorose. One of us (C. H. Degáspari) thanks Fundação de Amparo à Pesquisa do Estado de São Paulo, for a scholarship, and Fundação Tropical de Pesquisas for a travelling grant.

REFERENCES

- Bobbio, F. O., Bobbio, P. A. & Rodriguez-Amaya, D. (1983). Anthocyanins of the Brazilian fruit Cyphomandra betaceae. Food Chemistry, 12, 189.
- Chandler, B. B. & Harper, K. A. (1961). Identification of saccharides in anthocyanins and other flavonoids. Austr. J. Chem., 14, 486.
- Chen, L. F. & Luh, B. S. (1967). Anthocyanins in Royal Grapes. J. Food Sci., 32, 66.
- Du, C. E. & Francis, F. J. (1973). Anthocyanins of roselle Hibiscus sabdarissa L. J. Food Sci., 38, 810.
- Francis, F. J. (1982). Analysis of anthocyanins. In: Anthocyanins as food colors, Chap. 7. Academic Press, New York, pp. 182-205.
- Francis, F. J. & Harborne, J. B. (1966). Anthocyanins of the garden Huckelberry, Solanum guineese. J. Food Sci., 31, 524.
- Francis, F. J., Draetta, I., Baldini, V. & Iaderoza, M. (1982). New anthocyanins from *Tibouchina granulosa*. J. Amer. Soc. Hort. Sci., **107**(5), 789.
- Harborne, J. B. (1964). Plant polyphenols XI. The structure of acylated anthocyanins. *Phytochemistry*, 3, 151.
- Harborne, J. B. (1967). The anthocyanins pigments. In: Comparative biochemistry of flavonoids, Chap. 1. Academic Press, New York, pp. 1-30.
- Pifferi, P. G. (1965). Thin-layer chromatography on silica gel G of some phenol carboxylic acids. Vitis, 5, 24.

- Sweeley, C. C., Bentley, R., Makita, M. & Wells, W. W. (1963). Gas-liquid chromatography of tri-methyl derivatives of sugars and related substances. J. Am. Chem. Soc., 85, 1497.
- Vaccari, A., Pifferi, P. G. & Zaccherini, G. (1981). Anthocyanins of Sunflower (Helianthus annuus). J. Food Sci., 47, 40.

F. O. Bobbio, P. A. Bobbio & C. H. Degáspari

Departmento de Ciência de Alimentos, Faculdade de Engenharia de Alimentos e Agricola, Universidade Estadual de Campinas, 13100 Campinas, SP., Brazil

(Received: 27 February, 1985)